juan_gandhi: (VP)
монады в скале и все такое

Добавить/поправить/расширить что, или как?
juan_gandhi: (VP)
scala> val s = Set("a", "b", "c")
s: scala.collection.immutable.Set[String] = Set(a, b, c)

scala> val t = s.map(_ + ":)")
t: scala.collection.immutable.Set[String] = Set(a:), b:), c:))

scala> val s = Set("a1", "a2", "a3")
s: scala.collection.immutable.Set[String] = Set(a1, a2, a3)

scala> val t = s.map(_ take 1)
t: scala.collection.immutable.Set[String] = Set(a)

scala> val u:Set[Any] = s map identity
u: Set[Any] = Set(a1, a2, a3)

scala> val v:Set[Any] = s
<console>:8: error: type mismatch;
 found   : scala.collection.immutable.Set[String]
 required: Set[Any]
Note: String <: Any, but trait Set is invariant in type A.
You may wish to investigate a wildcard type such as `_ <: Any`. (SLS 3.2.10)
       val v:Set[Any] = s

From a categorist's p.o.v, wtf, if we have map, we have a covariant functor. But wow, it's "type theory", covariance here means only covariance w.r.t. subtyping. So, big deal, map with identity, no? I mean, not being a typist, I don't even understand the problem. Do you?


Jul. 24th, 2013 09:37 pm
juan_gandhi: (VP)
You know the stupid problem with Java/Scala collections: their contains() method takes any type; the explanation being that for this method to be type-dependent, we need contravariance, while collections are (mostly) covariant. So there.

Well, a natural transformation from a covariant functor to a contravariant is not only possible, it's a relatively popular thing. So, does it mean we can make contains() method type-dependent? The answer is YES!

  trait MyList[+T] { // declare a simple collection, e.g. list; it is covariant
    def head:T
    def tail:MyList[T]
    def ::[U>:T](x:U) = HeadAndTail(x, this)
    def size: Int

  case object EmptyList extends MyList[Nothing] { // it's okay that it's a list of Nothing
    def head = error("This list is empty")
    def tail = error("this list is empty")
    def size = 0

  case class HeadAndTail[T](head:T, tail: MyList[T]) extends MyList[T] {
    def size = 1 + tail.size
// All the stuff above allows us to treat lists in a covariant way, like this:
      case class A(name: String) {override def toString = "A(" + name + ")"}
      case class B(override val name: String) extends A(name) {override def toString = "B(" + name + ")"}

      val listB = B("1") :: B("2") :: EmptyList
      listB.size must_== 2
      val listA = A("3") :: listB
      listA.size must_== 3
      val listC: MyList[Any] = listA
// See, MyList is covariant, so if B is a subtype of A, List[B] is a subtype of List[A]

And now... introduce a contravariant trait:
  trait Container[-T] {
    def contains(t:T): Boolean

// and the natural transformation from MyList[+T] to Container[-T]:

  implicit def asContainer[T](list:MyList[T]): Container[T] = new Container[T] {
    def contains(t:T) = list.size > 0 && (list.head == t || asContainer(list.tail).contains(t))

And it works. I can draw the appropriate commutative diagrams later, if it is not obvious.

      listA contains A("3") must beTrue
      listA contains B("1") must beTrue
//      listA contains "abracadabra" is a compilation error
      listC contains "abracadabra" must beFalse
      listC contains B("2") must beTrue

Questions? :)

I think it's cool; category theory applied directly to solve a code design problem.
juan_gandhi: (Default)
Тут мы с [livejournal.com profile] sassa_nf обсуждали вопрос, как это получается, что оно монада.

В принципе, это есть в МакЛейне, но у МакЛейна всё так мудрено. А надо-то на пальцах.

В другом месте - т.наз. функторы Hom участвуют - а у меня к ним прямо гомофобия; такую неприязнь чувствую к функтору Hom, кушать не могу.

Так вот, напишу-ка я тут вкрадце, шо за сопряженные функторы и как они связаны с монадой.
Для программистов напишу, так что никаких когомологий, кобордизмов, 2-категорий, расширений Кана, а всё на пальцах, лишь бы не лень читать было.
Read more... )
juan_gandhi: (Default)
Subclassing errors, OPP, and practically checkable rules to prevent them

P.S. I believe the problem is that with stateful objects, we do not know exactly which category are we dealing with; roughly speaking, for class A subclassing class B, there are actually two monads, with a natural transformation from one to another; and we think we have a functor from, not sure yet, one Kleisli category to another, or from one Eilenberg-Moore category to another, or even an interesting relationship between two categories of adjoints generated by the monads.

Have to look closer; maybe this explains the problem with "Liskov substitution".


juan_gandhi: (Default)

August 2017

   1 23 4 5
6 7 8 9 10 11 12
13 14 15 16 1718 19
20 21 2223242526


RSS Atom

Most Popular Tags

Style Credit

Expand Cut Tags

No cut tags
Page generated Aug. 23rd, 2017 06:19 am
Powered by Dreamwidth Studios