juan_gandhi: (Default)
2021-01-04 07:42 pm

Σ⊣*⊣Π

Given a topos ℰ and an internal functor f: C → D in ℰ between two internal categories, we have three adjoint functors, Σf⊣f*⊣Πf.

These two functors, Σf and Πf, can be viewed as giving left and right Kan extensions for diagrams (copresheaves) of C along f.

Meaning, for a copresheaf X: C → ℰ,

Σf(X) = Lanf(X)

Πf(X) = Ranf(X)

(I mean, I'm still stuffing Kan extensions into my brain, and this picture is what makes the picture clearer)

P.S. Ха! Оказалось, что это теорема, и доказывается через Йонеду.

Theorem 2.6. If the Kan extensions exist for all F, then LanK− and RanK− are
respectively the left and right adjoints to the functor − ○ K which is precomposition with K.