Σ⊣*⊣Π

Jan. 4th, 2021 07:42 pm
juan_gandhi: (Default)
[personal profile] juan_gandhi
Given a topos ℰ and an internal functor f: C → D in ℰ between two internal categories, we have three adjoint functors, Σf⊣f*⊣Πf.

These two functors, Σf and Πf, can be viewed as giving left and right Kan extensions for diagrams (copresheaves) of C along f.

Meaning, for a copresheaf X: C → ℰ,

Σf(X) = Lanf(X)

Πf(X) = Ranf(X)

(I mean, I'm still stuffing Kan extensions into my brain, and this picture is what makes the picture clearer)

P.S. Ха! Оказалось, что это теорема, и доказывается через Йонеду.

Theorem 2.6. If the Kan extensions exist for all F, then LanK− and RanK− are
respectively the left and right adjoints to the functor − ○ K which is precomposition with K.

Profile

juan_gandhi: (Default)
Juan-Carlos Gandhi

June 2025

S M T W T F S
1 2345 6 7
8 9 10 11 121314
15161718192021
22232425262728
2930     

Most Popular Tags

Style Credit

Expand Cut Tags

No cut tags
Page generated Jun. 14th, 2025 05:48 pm
Powered by Dreamwidth Studios