something about the finiteness of math
Dec. 31st, 2017 08:30 am(BB(n) is the number of steps Busy Beaver Turing Machine with n states takes before halting)
"But the BB function has a second amazing property: namely, it’s a perfectly well-defined integer function, and yet once you fix the axioms of mathematics, only finitely many values of the function can ever be proved, even in principle. To see why, consider again a Turing machine M that halts if and only if there’s a contradiction in ZF set theory. Clearly such a machine could be built, with some finite number of states k. But then ZF set theory can’t possibly determine the value of BB(k) (or BB(k+1), BB(k+2), etc.), unless ZF is inconsistent! For to do so, ZF would need to prove that M ran forever, and therefore prove its own consistency, and therefore be inconsistent by Gödel’s Theorem. OK, but we can now ask a quantitative question: how many values of the BB function is it possible for us to know? Where exactly is the precipice at which this function “departs the realm of mortals and enters the realm of God”: is it closer to n=10 or to n=10,000,000? "
src
"But the BB function has a second amazing property: namely, it’s a perfectly well-defined integer function, and yet once you fix the axioms of mathematics, only finitely many values of the function can ever be proved, even in principle. To see why, consider again a Turing machine M that halts if and only if there’s a contradiction in ZF set theory. Clearly such a machine could be built, with some finite number of states k. But then ZF set theory can’t possibly determine the value of BB(k) (or BB(k+1), BB(k+2), etc.), unless ZF is inconsistent! For to do so, ZF would need to prove that M ran forever, and therefore prove its own consistency, and therefore be inconsistent by Gödel’s Theorem.
src