juan_gandhi: (VP)
[personal profile] juan_gandhi
As I understand for a functor F to be able to produce a free monad, it has to preserve colimits, right? That includes unions.

So the functor X2, not preserving sums, cannot produce a free monad... right? I think so, at least.

On the other hand, a fixpoint of 1+X2 is a binary tree. So? :)

Something's wrong here.

Date: 2016-11-02 07:42 am (UTC)
From: [identity profile] nivanych.livejournal.com
> So the functor X^2, not preserving sums
> cannot produce a free monad... right?

Functor X^2 is a not functor on a category of functors.

Date: 2016-11-02 06:17 pm (UTC)
From: [identity profile] juan-gandhi.livejournal.com
Wait. I was talking about a free monad built on a specific functor.

Date: 2016-11-02 09:31 am (UTC)
From: [identity profile] pbl.livejournal.com
> So the functor X2, not preserving sums, cannot produce a free monad... right? I think so, at least.

Isn't this once again about the fact that "categorical" nomenclature in type theory doesn't map to actual categorical nomenclature it mimics? Free Pair sure exists, it's a binary values-in-leaves tree.

> fixpoint of 1+X2 is a binary tree

Well, if we define data Either' f a b = Left' (f a) | Right' b, then it's easy to show that Free f a is isomorphic to Fix2 (Either' f) a. This can be extended to a more general notion of covariant functors (endofunctors in the category of indexed types, at least), but it gets seriously ugly, and I haven't the foggiest how all of that maps to proper CT.

Date: 2016-11-02 12:25 pm (UTC)
From: [identity profile] dmitri-pavlov.livejournal.com
If the category in question is locally finitely presentable
(probably true for pretty much any application in computer science),
then all what you need is preservation of filtered colimits
(i.e., no need to preserve coproducts).
This is a rather weak condition and monads with such a property are sometimes
referred to as finitary monads
(and finitary endofunctors are endofunctors that preserve filtered colimits).

In fact, in this situation not only does the free monad always exist,
but the adjunction between finitary monads and finitary endofunctors
is itself monadic, i.e., there is a certain monad on the category
of finitary endofunctors whose algebras are (finitary) monads.

This is a theorem of Kelly, see
http://dx.doi.org/10.1016/S0022-4049(99)00019-5

Date: 2016-11-02 06:18 pm (UTC)
From: [identity profile] juan-gandhi.livejournal.com
Oh. Makes a lot of sense now. Just filtered colimits, of course. I had missed that. Thanks!!!
Edited Date: 2016-11-02 06:19 pm (UTC)

Date: 2016-11-03 05:17 pm (UTC)
From: [identity profile] zeit-raffer.livejournal.com
О, пропустил интересный пост.

Мне кажется, что в статье из предыдущего пункта устанавливаются условия для более сильного результата, чем просто существование св. монады. Интересно поставить вопрос о контрпримере, в смысле свободной монады на нефинитарном функторе.

Date: 2016-11-03 06:34 pm (UTC)
From: [identity profile] juan-gandhi.livejournal.com
Да, конечно. Хотелось бы и то и то.

Нефинитарный, для которого свободная монада существует (мой пример не годится?), и нефинитарный, для которого свободной монады не существует.
Edited Date: 2016-11-03 06:46 pm (UTC)

Date: 2016-11-03 06:48 pm (UTC)
From: [identity profile] zeit-raffer.livejournal.com
Разберемся!

Date: 2016-11-03 06:46 pm (UTC)
From: [identity profile] juan-gandhi.livejournal.com
Да, конечно. Хотелось бы.

Profile

juan_gandhi: (Default)
Juan-Carlos Gandhi

May 2025

S M T W T F S
    1 2 3
456 7 8 9 10
11 121314151617
18192021222324
25262728293031

Most Popular Tags

Style Credit

Expand Cut Tags

No cut tags
Page generated May. 15th, 2025 06:43 pm
Powered by Dreamwidth Studios