amazingly simple set theory
Mar. 8th, 2019 01:59 pm![[personal profile]](https://www.dreamwidth.org/img/silk/identity/user.png)
Pocket Set Theory
PST also verifies the:
- Continuum hypothesis. This follows from (5) and (6) above;
- Axiom of replacement. This is a consequence of (A4);
- Axiom of choice. Proof. The class Ord of all ordinals is well-ordered by definition. Ord and the class V of all sets are both proper classes, because of the Burali-Forti paradox and Cantor's paradox, respectively. Therefore there exists a bijection between V and Ord, which well-orders V. ∎
The well-foundedness of all sets is neither provable nor disprovable in PST.