I get this reasoning. But I have a question that precedes this.
Before estimating "b" in a + b*t, we test whether it is just a. This is not the same as estimating "b", because the result is not a choice between a non-zero "b" and a zero "b". (A "zero" b is already an estimate of b, right?) This is a test whether temperature is just a random quantity. (Perhaps, with some autocorrelation)
Then we estimate "b" to see whether a + b*t is a good description of a "trend". But it can also be seen as a test to see whether a + b*t is a good estimator of temperature. This is where I am stuck. Consequently, when we reject "b" as not a good estimate, we are not rejecting a concrete value of it, we are rejecting the hypothesis that the temperature estimator is a linear function.
no subject
Date: 2020-01-08 04:52 pm (UTC)Before estimating "b" in a + b*t, we test whether it is just a. This is not the same as estimating "b", because the result is not a choice between a non-zero "b" and a zero "b". (A "zero" b is already an estimate of b, right?) This is a test whether temperature is just a random quantity. (Perhaps, with some autocorrelation)
Then we estimate "b" to see whether a + b*t is a good description of a "trend". But it can also be seen as a test to see whether a + b*t is a good estimator of temperature. This is where I am stuck. Consequently, when we reject "b" as not a good estimate, we are not rejecting a concrete value of it, we are rejecting the hypothesis that the temperature estimator is a linear function.