![[personal profile]](https://www.dreamwidth.org/img/silk/identity/user.png)
Given a topos ℰ and an internal functor
These two functors,
Meaning, for a copresheaf
(I mean, I'm still stuffing Kan extensions into my brain, and this picture is what makes the picture clearer)
P.S. Ха! Оказалось, что это теорема, и доказывается через Йонеду.
Theorem 2.6. If the Kan extensions exist for all F, then LanK− and RanK− are
respectively the left and right adjoints to the functor − ○ K which is precomposition with K.
f: C → D
in ℰ between two internal categories, we have three adjoint functors, Σf⊣f*⊣Πf
.These two functors,
Σf
and Πf
, can be viewed as giving left and right Kan extensions for diagrams (copresheaves) of ℰC
along f
. Meaning, for a copresheaf
X: C → ℰ
,Σf(X) = Lanf(X)
Πf(X) = Ranf(X)
(I mean, I'm still stuffing Kan extensions into my brain, and this picture is what makes the picture clearer)
P.S. Ха! Оказалось, что это теорема, и доказывается через Йонеду.
Theorem 2.6. If the Kan extensions exist for all F, then LanK− and RanK− are
respectively the left and right adjoints to the functor − ○ K which is precomposition with K.