revisiting mathoverflow
Jun. 13th, 2018 11:32 am![[personal profile]](https://www.dreamwidth.org/img/silk/identity/user.png)
https://mathoverflow.net/questions/171809/building-a-product-of-two-categories
It was a pretty legit question, but Doctor Wofsey says it's off-topic, and all categories are based on sets; seems like, in his view all theories are based on sets.
So, what should we do with a bunch of idiots pretending to be mathematicians? I don't know. I'm not one. But neither are they.
Reasked.
It was a pretty legit question, but Doctor Wofsey says it's off-topic, and all categories are based on sets; seems like, in his view all theories are based on sets.
So, what should we do with a bunch of idiots pretending to be mathematicians? I don't know. I'm not one. But neither are they.
Reasked.
no subject
Date: 2018-06-13 08:45 pm (UTC)Вот не надо этих беспочвенных обвинений. Как работает мозг я знаю. Там и морфология этому способствует. И не надо спорить с тем, что я не писал.
Насчёт же математики. Можно объяснить категории не привлекая теорию множеств. Но много ли человек это поймут? Я уж не говорю о том, чтобы использовать.
no subject
Date: 2018-06-13 08:50 pm (UTC)Аналогично.
А как вы теорию множеств объясняете? Привлекая теорию множеств? Turtles all the way down?
Раз вы знаете, как работает мозг, наверно, можете объяснить, например, как древние греки манипулировали геометрией без всяких множеств.
no subject
Date: 2018-06-13 09:00 pm (UTC)Объяснение логики не базируют на теории множеств. Слово "привлекают" очень эластично и тут можно поговорить о применении свойств множеств. Но я тут этого делать не буду.
Аналогично.
Похоже, это не канонический подход. По крайней мере всё, что я видел, содержит объяснения или примеры с множествами. (Может быть, в этом причина того, что вокруг разброд и шатания)
как древние греки манипулировали геометрией без всяких множеств.
Как они отличали треугольник от квадрата?
no subject
Date: 2018-06-13 09:15 pm (UTC)no subject
Date: 2018-06-13 09:17 pm (UTC)no subject
Date: 2018-06-13 09:33 pm (UTC)А вот откуда вы взяли, что треугольники образуют множество? В какой теории множеств, если не секрет?
no subject
Date: 2018-06-14 06:37 am (UTC)Наводящий вопрос. Что появляется раньше: интуитивное понимание, вербально-графическое выражение предположения или построение с помощью доказательства?
no subject
Date: 2018-06-14 01:50 pm (UTC)no subject
Date: 2018-06-14 02:20 pm (UTC)no subject
Date: 2018-06-14 06:42 am (UTC)no subject
Date: 2018-06-14 06:47 am (UTC)no subject
Date: 2018-06-14 06:52 am (UTC)no subject
Date: 2018-06-14 07:14 am (UTC)no subject
Date: 2018-06-14 08:14 am (UTC)Did they have a zero? I don't think so. There were religious battles about that, if I recall well.
Then they may have difficulty thinking of an empty Set, too. There may have been no way to describe the intersection of the "set" of squares and the "set" of triangles.
Did they have functions between "sets" of squares and triangles? Without functions talking about "sets" is not entirely meaningful.
You could still categorize things - "all things with three angles are triangles", but does that make them "a set of triangles"?
You can still use universal propositions - "all triangles define a 3-d plane", but does that necessitate "a set of triangles" to exist as a concept?
no subject
Date: 2018-06-14 08:30 am (UTC)2. What did they do in cases such as X - V - II - III ?
no subject
Date: 2018-06-14 12:49 pm (UTC)But point taken, I do come from modern understanding of what a set theory must have. On the other hand, if we discard modern understanding, it is difficult to see why some other criterion would not be arbitrary.
2. NaN. As far as I recall, ancient Europeans did not consider zero as a number, and would write "nothing". I can't remember when ancient Asians (won't even go into Persia vs India) decided that zero is a number, nevertheless, it wasn't immediately obvious to them. Zeros, bottoms, empty sets are not easy to understand.
no subject
Date: 2018-06-14 02:25 pm (UTC)no subject
Date: 2018-06-14 06:24 pm (UTC)It's noticeable when a positional system has a sign for 0 for a missing place-value (like, to mark zero units in 10), but does not use it for zero.
no subject
Date: 2018-06-13 08:53 pm (UTC)no subject
Date: 2018-06-13 08:55 pm (UTC)no subject
Date: 2018-06-13 09:04 pm (UTC)no subject
Date: 2018-06-14 06:51 am (UTC)