juan_gandhi: (Default)
[personal profile] juan_gandhi
Но я наслаждаюсь аргументами противников теории ГП. Красиво гонят, такое ощущение, что это какая-то умственная паника.

Типа почему никакого ГП нету вообще:

- да последние пять лет самые холодные за наблюдаемую историю вообще;

- у нас на Магадане морозы надоели уже, пусть уже потеплее будет;

- в 1500-м 97% ученых считали, что Земля неподвижна, а кто был не согласен, того на костре сжигали;

- на Марсе тоже ледники тают;

- всех интересует только температура на поверхности, а что творится на высоте 10км, никого не интересует;

- при динозаврах вообще стояла жарища;

- инерция поведения океана: вода, что сейчас выходит к поверхности на Бермудах (и дальше идет в качестве Гольфстрима), шла от Антарктиды, вдоль Южной Америки, примерно тысячу лет;

- Грета Тунберг в школу давно не ходила;

- Индии и Китаю вообще пофиг какая температура стоит, им первым делом надо народ накормить;

- так нам в Калифорнии чего конкретно ожидать-то, засухи или наводнений? А то каждый год новости;

- кто-нибудь вообще изучал вопрос изменения поведения Солнца за последние 50-100 лет?

Date: 2020-01-09 01:40 pm (UTC)
chaource: (Default)
From: [personal profile] chaource
So, we are back to the original question - estimate "b" from a given dataset T(t) using the assumption that T(t) = a + b*t + U(t) where U is unknown noise with zero mean.

You performed a calculation where you estimated "b" linearly from different time intervals. Let us first assume that the true value "b" is the same for all time from 1900 to 2020. Then you can perform linear fit for "b" with different time intervals. For example, take the 20-year intervals 1900-1920, 1901-1921, 1902-1922 and so on until 2000-2020. The result will be 100 different estimates of "b". They are not independent, of course, but highly correlated. Nevertheless, you can look at the resulting distribution of estimates and see if there is evidence that the mean of "b" is not zero.

You can compute the mean and the standard deviation of the set of 100 estimates of "b". Roughly, if the mean is > 2 stdev then the mean is nonzero with high confidence. You can also use other statistical tests for nonzero mean, of course.

Date: 2020-01-09 03:37 pm (UTC)
From: [personal profile] sassa_nf
I see. I think I understand now.

I think the criticism remains in force. If the "b"s are not iid, then "the mean is > 2 stdev" may not apply. The problem is not only the correlation between "b"s (one flavour of "dependent"), but also how they are going to be distributed (another flavour of "dependent"). Put differently, if you were to draw samples of 20 normally distributed values, and computed "b"s, would such "b"s be distributed normally? If not, then why would the two-sigma rule be meaningful?

Date: 2020-01-09 03:43 pm (UTC)
chaource: (Default)
From: [personal profile] chaource
The two-sigma rule is very rough. Of course, the 100 values of "b" are not independent (although they are identically distributed). To be correct, you need to calculate the correlation between all of them. But as a very rough guide, you can take two sigma. In a more precise calculation, such as in my Fourier-based analysis, you can exactly account for correlations.

Profile

juan_gandhi: (Default)
Juan-Carlos Gandhi

May 2025

S M T W T F S
    1 2 3
456 7 8 9 10
11 121314151617
181920 21 222324
25262728293031

Most Popular Tags

Page Summary

Style Credit

Expand Cut Tags

No cut tags
Page generated May. 23rd, 2025 07:34 am
Powered by Dreamwidth Studios